Rotation Project : Simulating Rigid Body Dynamics with
Contact and Friction

Manas Bhargava
manas.bhargava@ist.ac.at
Institute of Science and Technology, Austria

Supervised by - Prof. Bernd Bickel
bernd.bickel@ist.ac.at
Institute of Science and Technology, Austria

| { t
w:2.8156 woll7es4
w:0.9432
w:-1.]
w: 313927 ,
w:0.1571 w
w:-0.8377 w:0,942
w:-1. 5708885 W:-0.3142 w:0.3142
=-é A A

Figure 1: Humanoid walking on the ground after estimating the torque trajectories using our inverse dynamics method.

1 INTRODUCTION
1.1 Motivation

In present times, robots have become an integral part of the human
world. They are capable of performing tasks of extreme difficulty
with very high precision and in environment which are difficult
for humans to access. We can now see robots working in almost
every domain of life - from solving rubik’s cube quickly to helping
us as a house cleaner and from being an integral part of indus-
trial assembly line to explorers out in Mars searching for new life
forms. But controlling these robots to perform a certain motion
trajectory is a non-trivial task. Consider the problem of humanoid
walking, it is very difficult to estimate the torque values at differ-
ent time steps that should be applied by the motors to make the
robot walk. It requires significant human labour and time to get
the required torque trajectories. Doing this experiment on a real
robot might even damage it if the torque trajectories are not ad-
ministered carefully. Therefore, having a virtual forward dynamics
simulator which imitates the real world by including both contact
and friction is helpful. It allows the researcher to test out different
torque trajectories without harming the robot. However, trying
out different torque values to obtain the correct motion takes a
lot of human effort and time, even to generate a simple humanoid
walking motion. This problem makes it very difficult to generalize
such control method over different robot configuration and motion
cycles. Thus, there is a need of an inverse dynamics based control
system. It allows one to estimate the torque profile that is needed to
get a given motion profile while including both contact and friction.

1.2 Overview of what we did

We formulated the problem of forward dynamics and inverse dy-
namics including both contact and friction mathematically and
developed a rigid-body simulator in 3d to do both these tasks. We
created our own dynamics system instead of using commercially

available softwares as a black box. This enabled us to learn in detail
about the technical difficulties related to implementing rigid body
dynamics involving contact and friction. We showcased the motion
of humanoid and 4-legged robot using the inverse dynamics formu-
lation by following a particular trajectory while including contact
and friction.

This report is organised as follows : first, we introduce the readers
to robotics. We then discuss the implementation of both forward
dynamics and inverse dynamic methods. Later, we discuss the re-
sults that we obtained using these methods. At last, we discuss the
failure cases of using inverse dynamics method as a controller for
robots and the possible extension to our approach that can help in
alleviating the failure cases.

2 A BRIEF INTRODUCTION TO ROBOTICS

This section discusses what do we mean by robots and the existing
methods that are used to control the robots.

2.1 What are robots?

Robots are basically any autonomous system of rigid bodies with a
central control system which is programmed by the user. The rigid
bodies are made up of system of links where every link contains a
series of joints and a rod connecting these joints. Figure 2 shows
the rigid body system for a 4-legged robot. Every joint have their
own local coordinate system which specifies in which direction
they allow the rod to rotate or translate. These joints in the rigid
body system can be of two types - revolute joints and prismatic
joints. Revolute Joints allow the link to rotate about the local z-
axis of the joint. While prismatic joints allow the rod to translate
about the local z-axis of the joints. The way these joints and their
axes are aligned is given by the Denavit—Hartenberg parameters
(also called DH parameters) [Hartenberg and Denavit 1964]. In DH
parametrization, an i th joint is represented by 4-parameters -

Figure 2: A rigid body system consisting of 4 set of links
where each link consist of 3 actuated revolute joint. We also
have two 2 prismatic joints attached at the root of the rigid
body which are not-actuated and are moved by the influence
of normal and friction forces. Thus in total we have 12 actu-
ated joints and 2 non-actuated joints.

e a: length of the link
e 0: the angle with which rotates the previous x-axis (x;—1)
is rotated with respect to previous z-axis (z;—1) to obtain
current x-axis (x;)
e a: the angle with which rotates the previous z-axis (z;—1) is
rotated with respect to current x-axis (x;) to obtain current
z-axis (z;)
e d: displacement of the rod in z axis direction.
Amongst the 4 parameters, 1 of them represent the variable pa-
rameter which can be actuated by the joint with the help of the
motors present in the robot for each joint. For prismatic joint
this variable parameter is d and for revolute joint the variable
parameter is 0. The Figure 3 describes the usage of DH param-
eters for 2-link system. Thus for each joint i we can define the
transformation matrix (A;) that takes us from joint i to joint i+1
with appropriate axis transformation and is defined as follows -
Aj = Rot, g,Trans, gTrans; qRotx o; =

cg —-sp 0 0] [t 0 0 0
sg cg 0 Of o 1 0 0
0 0 1 0|00 1 d
K 0 0 1 0 0 0 1
(1 0 0o a]f1 o 0 0 cg —SpCa SpSa acp
0 1 0 0|0 cg —Sa O] [sg cgca —CopSa asg
0 0 1 0|0 s¢ ca O |0 S Ca d
0 0 0 1(f0 O 0 1 0 0 0 1

Knowing the A; transformation matrix for each joint at a given
time leads to articulation of our rigid body system to a specific pose.
[Mirtich 1996] provides a very good introduction on how the rigid
body are simulated based on the DH parameterization system.

2.2 How to control robots?

The methods that are widely used to control robots falls under two
major categories - Open Loop Method and Closed Loop Method.

Manas Bhargava and Supervised by - Prof. Bernd Bickel

JOINT -1 JOINT = JOINT i+1

1

(o —
LINK i-1 | LINK 1

— — T\,

B % o/

_ =
\ zi'* yiwzi

B B P
\ y:\g: L L0 %

T i
\ ‘l ! \\/‘ /
\ “ /
L N /
\) O /
| i-1
\ I

Figure 3: The figure shows the different DH parameters for
a joint and how it helps in determining the local axis for the
joints.

Open loop methods allows the user to specify the torque values
for the entire task. These control methods are very fast as they
just ask the robot to follow the instruction blindly without taking
into account any feedback from the environment in which they
are functioning. Thus, these control methods are usually found in
systems where the main aim is to do tasks at a faster pace; like the
robots that are used in industrial assembly line or when you are
trying to break the record of fastest rubik’s cube solving.

On the other hand, Closed loop method have a feedback mecha-
nism that controls the robot’s action being performed. They usually
have a number of sensors attached to them and these sensors give
back feedback about the environment which are then used to make
informed decisions. Such control methods are usually found in
robots where the possibility of uncertain events is taken into ac-
count while performing a certain task. Careful interaction with the
environment without causing harm to either environment or the
robot is more important than the speed with which the task is done.
Some examples are driver less cars, exploring robots in space, etc.

The way we have define this control methods, one can think
of forward dynamics being very similar to the open-loop method
where we define some torque trajectory which we just apply to sim-
ulate our robot and generate the motion profile. On the other hand,
inverse dynamics can be thought of as a closed control method,
where we have some given trajectory that we need to follow and
we calculate the torque value that should be applied by the motors
of the robot to follow that trajectory. In the following sections, we
discuss both these methods in detail.

3 FORWARD-DYNAMICS

Forward dynamics refers to the method of moving the robots under
the influence of time-varying torque which is applied by the mo-
tors. As a result of these torques the robots performs certain action
while following the laws of Physics. Tuning the torque value of the
different motors to make the robot follow a particular trajectory
can be extremely hard task and requires either trial and error be-
fore obtaining the right torque trajectory or some learning based
methods like reinforcement learning. Note that humans also have

Rotation Project : Simulating Rigid Body Dynamics with Contact and Friction

to practice quite a lot (tune the muscle torque trajectories) before
they can walk without falling.

3.1 Simulating the robot

We first write the laws of physics using the Lagrangian mechanics.
Each of the different free parameter that can be actuated by the
motors are represented by : q = [qo, q1. 92,qn_l] This represen-
tation is also called generalized coordinate representation or minimal
coordinate representation as it uses only the minimum number of
parameters that are necessary to represent the rigid body system.
Thus from now on, all the terms that we define are written in the
generalized coordinate system. We define Lagrangian (L) as follows

L=K.E.—P.E. where,

K.E. = 14T 2" [miJo, (@) Jo, (@) + Juw; (@ T Ri(QIRi (@) T, (@] .
and P.E.=X1 gTre,mi.

The equations of motion are then obtained by writing and sim-
plifying the Euler-Lagrange equation given by -

d 0L oL

— ===y

dtdq dq
which when simplifies yield’s -

M(g)q + C(g:9)4 + 9(q) = 7.)

where, M(q) represents the Mass matrix of the system for some
pose configuration q at time t, C(q,q)q represents the coriolis and
centrifugal forces that act on the rigid body and g(q) represents
the force due to gravity acting on the body and 7 represents the
internal force/torque applied by the motors to actuate the motors.
Please refer to [Liu and Jain 2012] for further details on deriving
this equation from first principles.
The equation (1) is a non-linear second order differential equation
representing the motion of rigid body system in time. Analytical
solutions for such system are difficult to obtain. Thus we rely on
numerical integration schemes to solve this differential equation
and obtain q as a function of time for each joint. We experimented
with different integration schemes - implicit euler schemes using
fixed point iteration, explicit euler and semi-implicit euler. Each
of them has its own pros and cons. Implicit euler damps the total
energy of the system while explicit euler incurs error over time and
have the tendency to blow up. But at the end, we ended up using a
variant of explicit euler for this task. Coming up with a good higher
order integration scheme for this task is taken into consideration
for future work. Figure 4 showcase the motion of double-pendulum
system using our forward dynamics simulation.

3.2 Introducing Contact and Friction

We now introduce the contact and friction forces in our equation (1)
to accommodate these phenomenons in our forward dynamics as
well. These forces are applied on the rigid body usually at the end
effector. Thus we use the jacobian matrix at that point to transfer the
forces from cartesian coordinate system into generalized coordinate
system. We represent the jacobian matrix corresponding to normal

frame a frame b

frame ¢ frame d

Figure 4: The figure shows motion of 2d-pendulum using
forward dynamics. The system was able to perpetuate for
a longer duration in time without blowing up the energy.

force (f;;) with N and jacobian matrix corresponding to friction
force (f;) with B as derived in [Tan et al. 2003]. After incorporating
these forces we have the modified dynamics equation given by -

M(g)§ + C(q.¢)g + 9(q) = 7 + Nfy + Bfy. 2

3.3 Solving Linear Complementarity Problem

Introduction of these new variables f;; and f; has complicated our
problem as we don’t know their values beforehand. Their values
are constrained with the current motion of the rigid body system
and thus imposes some constraint on the motions. There are 3
constraints that are introduced namely - normal force constraint,
friction force constraint and coulomb’s friction cone constraint.
[Stewart and Trinkle 2000] and [Tan et al. 2003] does a very good
job in introducing these constraints and explaining them. Using the
contact and friction constraints it can be shown that the equation
(3) represents the linear complementarity problem (LCP) [Tan et al.
2003].

al [MNTMIN AtNTM7'B 0] [fn] [NTM™1r*
bl = [AtBTM™IN AtBTM™'B E| |fd|+|BTM1r*| (3)
¢ I —ET of [4 0

where 7% is a constant value for that time step "n" and is given by -
" = Mq" - AK(C(q", ¢") + 9(¢") — ") ©

Here the equation (3) is of the form w = Az + q. The LCP problem
consists in finding w > 0, z > 0, such that w = Az + q and wlz=o.
Linear Complementarity problems occurs in various different fields
and are solved by using LEMKE'’s algorithm [Lloyd 2005]. Thus,
solving this LCP gives us the value of f,; and f; which we can put
in equation (2) and solve it using numerical integration method like
forward euler to simulate the motion of our rigid body system.

4 INVERSE-DYNAMICS

We define our second control method of inverse dynamics in this
section. In this method, we try to solve for torque values as a
function of time given a motion profile that the robot is asked to
follow. Our formulation closely follows the work done [Zapolsky
and Drumwright 2017] but the final matrix obtained is significantly
different. We define a new matrix P which helps in choosing which
all variables are actually actuated by the motor and which variables

are free to move under the influence of contact and friction forces.
For the case of humanoids we have 6 revolute joints which are
actuated by the motors attached to them and 2 prismatic joints
which follow are only influenced by the force applied by normal
reaction and friction. Thus, we can rewrite our equation (2) as
follows -

M(q)§ + C(q.9)q + g(q) = PTr + Nfy + Bfs, (5

Pt = s (6)
where v* represents the value of § at time t + At and ¢4, represents
the desired trajectory for the joints that can be actuated. We again
use the normal and friction constraints and obtain another Linear
Complementarity problem given by.

al [MNTM7Ix1 ANTM7IX2 0] [fn] [NTM™z}

b| = |AtBTM™IX1 AtBTM™'X2 E| |fd|+|BTM™z;

c 1 —ET 0] |2 0

™

where : X1 = N - PT(PM~'PT)"1pPM~IN ,
x2=B-Pl(pMm1PT)1pM~1B,
rf = NTM 1" + NTMIPT(PM1PT) (g4, — PM71T%)
r; = BTM™1r* + BTM'PT(PM™'PT)"Y(gges — PM~11%)
We can solve this equation using LEMKE’s algorithm to get the
values of f,, and f; which we put in equation (5) and as before solve
it using our numerical integrator to perform the desired motion
of rigid body system such that it follows a particular trajectory.
Figure 1 showcase the different poses of humanoid walking on the
ground involving both friction and contact forces simulated under
inverse-dynamics based formulation.

5 RESULTS

We created our own forward dynamics and inverse dynamics simu-
lator in 3D which included both contact and friction. Python and
basic python libraries were used for creating these simulators. The
only additional implementation that we borrowed was the LEMKE’s
solver by AndyLamperski. We showcased our methods by testing
them on different robot configurations including double link pen-
dulum, 2-legged-humanoid and 4-legged-robot.

6 FUTURE WORK

In this section, we discuss the further research directions that can
be pursued to improve on our approach and alleviate the limitations
that we faced. The figure 5 displays the limitations of our method
leading to robot falling on the ground.

o Better numerical integration method can be use to simulate
the rigid body system. Currently, we applied the simple vari-
ant of explicit euler method to simulate the robot forward
in time whose accuracy is of first order. Obtaining higher or-
der - runge-kutta methods would help us in obtaining better
approximates to our solution of both forward dynamics and
inverse dynamics.

o Implementing a better robust method to solve the LCP prob-
lem. Currently, LEMKE’s algorithm is the state of the art for
solving LCP problem but it assumes that the A matrix that
we obtain in (3) and (7) to be a P-matrix for it to give out
a solution. This is not the case for the matrix that we have

Manas Bhargava and Supervised by - Prof. Bernd Bickel

frame a frame b
w:-0.4042 w:-1.1029
w:0.6116 w:0.6078
w:1.2832 : w:1.0147
W:2.2339 :0.7603 W:5.6056 | 1 0aq
frame ¢ frame d
w:-1.6067
w:-9.0757
diotel W:0.705
w-3.3675 - W:-1.929
T w:-0.5161
L Au:21.73a8¥:0.3373 w21 6751

Figure 5: The figure shows failure cases of the human walk-
ing because of cumulation of errors over a period of time
when the learnt torque trajectories from inverse dynamics
are applied to forward dynamics simulation.

in our formulation of both forward dynamics and inverse
dynamics, which leads to non-availability of solutions in
some time steps. Thus having a robust LCP solver that can
work with Non-P matrices would be extremely helpful.

o It would be interesting to test the functionality of inverse
dynamics as a controller by testing the learnt torque trajec-
tories on real robots. With this we will be able to realize
the reality gap between the actual robots and the simulation
results.

REFERENCES

Richard S. (Richard Scheunemann) Hartenberg and Jacques Denavit. 1964. Kinematic
synthesis of linkages. New York : McGraw-Hill. Includes index.

C. Karen Liu and Sumit Jain. 2012. A Quick Tutorial on Multibody Dynamics.

John E Lloyd. 2005. Fast implementation of Lemke’s algorithm for rigid body contact
simulation. In Proceedings of the 2005 ieee international conference on robotics and
automation. IEEE, 4538-4543.

Brian Vincent Mirtich. 1996. Impulse-based dynamic simulation of rigid body systems.
University of California, Berkeley.

David Stewart and Jeffrey C Trinkle. 2000. An implicit time-stepping scheme for
rigid body dynamics with coulomb friction. In Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), Vol. 1. IEEE, 162-169.

Jie Tan, Kristin Siu, and C Karen Liu. 2003. Contact Handling for Articulated Rigid
Bodies Using LCP. (2003).

Samuel Zapolsky and Evan Drumwright. 2017. Inverse dynamics with rigid contact
and friction. Autonomous Robots 41, 4 (2017), 831-863.

https://github.com/AndyLamperski/lemkelcp

	1 Introduction
	1.1 Motivation
	1.2 Overview of what we did

	2 A Brief Introduction to Robotics
	2.1 What are robots?
	2.2 How to control robots?

	3 Forward-Dynamics
	3.1 Simulating the robot
	3.2 Introducing Contact and Friction
	3.3 Solving Linear Complementarity Problem

	4 Inverse-Dynamics
	5 Results
	6 Future Work
	References

