Rotation Project : Simulating fluids with surface tension

Manas Bhargava
manas.bhargava@ist.ac.at
Institute of Science and Technology, Austria

Supervised by - Prof. Scott Waitukaitis
scott.waitukaitis@ist.ac.at
Institute of Science and Technology, Austria

Figure 1: A spherical droplet of radius 4 cm is dropped onto the ground.

1 INTRODUCTION
1.1 Motivation

Researchers in computer graphics and physics often take a different
approach while tackling a problem. Computer graphics researchers
are more interested in simulating cool physical phenomenon, hav-
ing control over the simulation to add artistic effects, and most
importantly being computationally efficient so that the simulation
can be scaled for production in the animation and gaming industry.
On the other hand, physicists are more interested in making the
simulation match with real-world behavior so that they have a
better understanding of the physical model governing the behavior
of the particular physical phenomenon. In this rotation project,
we try to bridge the gap between the two disciplines and try to
utilize the recent development in fluid simulation to simulate fluid
close to the real-world behavior. We implemented the recent Affine
Particle in Fluid (APIC) [Jiang et al. 2015] method to simulate fluid
motion. We also introduce the sign distance field computation to
reconstruct the surface mesh from the simulation. The sign distance
field formulation was later used to augment our fluid simulation
with a physically motivated surface tension model.

2 BACKGROUND

2.1 Fluid simulation

Fluid simulation is an actively researched field in both computation
fluid dynamics and computer graphics. The seminal work of Harlow
and Welch [Harlow and Welch 1965] introduced an efficient way
of simulating fluids using staggered grids in the marker and cell
method. Stable fluids [Stam 1999] introduced operator splitting to
solve the Navier Stoke’s equation thereby providing an efficient
method of fluid simulation to the computer graphics community.
This opened up the possibility of improving this method by making
it more stable, less dissipative, and incorporating different physical
models. Recently in 2015, Jiang et.al [Jiang et al. 2015] introduced
the affine particle in cell (APIC) method for fluid simulation. Figure
2 showcases how APIC outperforms the previous state of the art
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Figure 2: The figure showcases the benefits of using APIC
over PIC and FLIP methods. Source - [Jiang et al. 2015]

methods particle in cell method (PIC) and fluid implicit particle in
cell method (FLIP) by being both stable and non-dissipative.

2.2 Sign Distance Field

In simple terms, the sign distance field represents the distance of
every point on the grid to its closest point on the surface. Thus for
a given closed set of points P on the surface, the signed distance
function ¢ (X)is given by -
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The sign distance field has several applications in fluid simulation.
It helps in reconstructing mesh surfaces thus providing realistic
animations. It improves the pressure projection solve discussed
in Section 5. The sign distance function posses some interesting
properties and helps in computing normal vector and the mean
curvature values at the surface. These properties play an important
role in formulating the surface tension force in the fluid.

2.3 Surface Tension

The initial work in the graphics community was focused on simulat-
ing water drops. They used particle-systems or spring-mass system



to model the droplets. These methods worked efficiently but lacked
the physical motivations behind the simulations and were thus lim-
ited in their capabilities to simulate diverse physical phenomena.
After the introduction of stable fluids in 1999 by Stam, researchers
started augmenting surface tension models into the fluid simulators.
Enright [Enright et al. 2003] and Lossaso [Losasso et al. 2004] used
Dirichlet pressure boundary conditions on air boundary cells by
estimating the mean curvature using the surface’s signed distance
function to model surface tension which generated promising re-
sults. Wang [Wang et al. 2005] later upgraded this method and
presented a physically motivated surface tension model for the 3D
interfacial surface tensions on arbitrarily curved solid boundaries
by enforcing the contact angles.

3 ALGORITHM OVERVIEW

In this report, we will discuss the fluid solver as described in Brid-
son’s book - Fluid Simulation for Computer Graphics [Bridson
2015]. We then present the extension of this work by incorporating
the APIC method described in [Jiang et al. 2015] for fluids. We then
discuss the implementation of the sign distance field for our surface
and use it for better rendering and improved non-voxelized pres-
sure projection solve. Later, we present the surface tension model
as introduced by Kang et.al [Kang et al. 2000] and further improved
by Enright [Enright et al. 2003]. Finally, we motivate the use of sign
distance function to approximate the normal vector and curvature
at the surface. We use the ghost air cell method to formulate the
forces arising due to surface tension and incorporate it into our
fluid simulation.

4 APIC - FLUID SIMULATOR

Our fluid simulator is governed by the Navier Stokes equation given
by -
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Here, u represents the velocity field of the fluid, P is the scalar
quantity pressure inside the fluid, p is the density of the fluid and
Fex: represents the external force that is applied on the fluid -
gravity, surface tension, and user applied input force.

We use the hybrid particle-grid based method to solve the Navier
Stokes equation (without the viscosity term). Instead of solving the
entire equation in one step, we perform operator splitting. This
allows us to divide the problem into small steps and solve them
independently and efficiently. The first term in equation 3 i.e. the
material derivative of the velocity field represents the advection
step of our simulation. The next step is to apply the external forces
and update the velocity field. After this we apply the pressure term
(in equation 3) along with the incompressibility condition (equation
4) and solve a Poisson’s equation given by -

At
=VVP=Vi (5)
p

This step is also referred to as the pressure projection step.

Thus overall our fluid simulator has three main steps - advection,
velocity update, and pressure projection solve. Instead of solving
this equation in the continuum domain, we discretize our Navier
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Stokes equation. Traditionally researchers have used either Euler-
ian (grid-based methods) or Lagrangian (particle-based methods)
to solve the discretized Navier Stokes equation. Both of them have
their advantages and disadvantages. The Eulerian method performs
well in velocity update and pressure projection solve. But the advec-
tion step is fairly complicated and requires higher-order integration
schemes like Runge-Kutta method or backward Euler methods to
better approximate the solution of the differential equation. This
still does not solve the problem properly as Runge-Kutta methods
are known to be slightly unstable in certain regimes while the back-
ward Euler method damps the entire fluid simulation significantly.
On the other hand, the Lagrangian method has a fairly straight-
forward implementation for advection and external force update
but implementing the pressure projection step is fairly complicated
and introduces approximation error. To counter this, we use a hy-
brid particle-grid based method for our simulation as motivated by
[Brackbill et al. 1988]. To ensure stability and avoiding dissipation
while transferring information between particles and grid we use
affine transfers as described in the APIC paper [Jiang et al. 2015].

In this method, the particle represents the principle information
about the fluid, i.e. its position and velocity. The background stag-
gered grid is used as a scratch-pad to perform further computations.
The grid stores the velocities at its faces while the pressure values
are stored at the grid centers. This way of storing values at faces
and cell centers was first introduced by [Harlow and Welch 1965]
and allows for robust and efficient computation of the discretized
gradients in the differential equation.

As the first step, the particle velocities are interpolated onto the
grid using affine transfer matrices. Once we have the velocities
on the grid, we apply the external force and update our grid ve-
locities. We then apply the pressure projection step, to calculate
the pressure values inside the fluid and update the grid velocity to
make them divergence-free. To solve the Poisson’s equation in the
pressure projection step, we use the Modified Incomplete Cholesky
Conjugate Gradient (MICCG) method as described in Bridson’s
book [Bridson 2015]. The divergence-free grid velocity field is thus
finally interpolated back to the particles. At this step, we perform
the advection step and update the position of the particles using
the updated particle velocity. The overall algorithm for the fluid
simulation is summarised in figure 3.

5 THE SIGN DISTANCE FIELD

To get an estimate of the surface, we need to implement the sign
distance field ¢(s). We create a sphere of radius (r = 2v/3) times the
grid spacing around every particle. This radius allows the particle to
cover all the grid cells that it affects while transferring the velocities
from particle to the grid nodes. Then for every grid node s and set
of particles P, we compute ¢emp(s) given by -

remp(5) = min 5~ Bll =7 ©)

All the points that are inside the surface have a negative value of
$temp (s) while all the outside points have a positive value. Using
this information of ¢semp(s) we calculate the boundary points
of the fluids whose neighbors lie outside the surface. For these
boundary points we linearly interpolate the ¢semp(s) value to the
surface which has ¢(s) value equal zero. This allows us to compute
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Figure 3: Overview of the Affine particle in cell (APIC)
method for fluid simulation.

the @ (s) value for all the boundary nodes. After obtaining the ¢(s)
for all the boundary nodes, we use the fast sweeping method as
described by Zhao in [Zhao 2005] to estimate the ¢(s) for all the
grid nodes.

The sign distance field thus computed is then used to enhance
our fluid simulator. It is used in the implementation of enhanced
pressure projection solve, making it more robust and makes the
rendering less voxelized. The procedure was used in the Ghost fluid
method by Gibou et al. [Nguyen et al. 2002] and is explained in
Bridson’s book [Bridson 2015].

We also utilize the sign distance field to create the surface mesh
and thus improving our rendering. For this, we apply the Marching
cubes method [Lorensen and Cline 1987] to generate 3D surface
reconstruction from the sign distance field. Figure 1 showcase the
rendering of liquid droplet splashing on the ground when dropped
from a height incorporating both enhanced pressure projection and
surface mesh rendering.

6 SURFACE TENSION

The sign distance field also plays an important role in implementing
the surface tension model. The force due to surface tension Fs; at
the boundary of the surface is given by -
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where p is the fluid density , y is the surface tension constant (0.072
N/m for water), k is the radius of curvature at the surface given by

v (%) and N is the unit normal vector at the surface given
S
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We apply this surface tension force as an external force at the
boundary cells before the pressure projection solve. We conduct
two experiments showcasing our surface tension model. In the first
experiment, figure 4 we showcase the evolution of a cubical surface
to a spherical surface in a gravity-free space. The surface tension
force tries to minimize the total surface area and thus changes the
shape from a cube to a sphere.

—>

(a) Cube (b) sphere

Figure 4: A cube of length 0.6 mm converts to a shape of
sphere to minimize the surface area as a result of the sur-
face tension force applied to it.

(a) Without surface tension (b) WIith Surface Tension
Figure 5: A sphere droplet of radius 0.3 mm is allowed to
settle on the ground. Surface tension is absent in figure (a)
and is taken into account in figure (b).

In the second experiment - figure 5 we compare the effect of sur-
face tension on the water droplet settled onto the ground. Without
the surface tension force, we see the water droplet flattens on the
ground (figure 5 (a)). On the other hand, in the presence of surface
tension force (figure 5 (b)), we notice a finite thickness of water
particles above the surface. The surface tension force allows the
water droplet to maintain its curvature instead of flattening out.

7 CONCLUSION AND FUTURE WORK

In this project, we worked on a fluid simulator to produce results
close to real-world behavior. We implemented an APIC based fluid
solver, which is both stable and non-dissipative. We also imple-
mented the sign distance function to improve our pressure projec-
tion solve and allowing us to render surface meshes. Further, we
implemented a simplistic surface tension model and showcase the
results.

Implementing 3D interfacial surface tensions for curved solid
boundaries is a direct extension of the current work and can be
incorporated into our fluid solver as future work. This method
handles fracture and splitting of particles naturally and thus avoids
the singularity problem related to breakage which drastically affects
the mesh-based approach. Thus interesting physical phenomena
that require breaking of the water surface can be modeled using
our fluid solver.
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